Understanding the impacts of subway's system interruptions on streetcar and bus transit service performance

TRANSIT DATA 2017: RESEARCH AND APPLICATIONS ON THE USE OF PASSIVE DATA FROM PUBLIC TRANSPORT - MAY 22-24, 2017. SANTIAGO, CHILE
$\begin{array}{ll}\text { Ehab Diab } & \text { (ehab.diab@utoronto.ca) } \\ \text { Amer Shalaby } & \text { (amer@ecf.utoronto.ca) }\end{array}$

Introduction

- Research gap and study objective
- Study context
- Methodology
- Analysis
- Conclusion
- Future Work

Research Gap

C

- Exploring the quality of transit service is traditionally done on a mode-by-mode basis
- Focusing on understanding the impact of different transit improvement strategies (TSP, reserved bus lanes., etc.) or the impacts of events or general factors (weather conditions, distance, number of stops, etc.)

Research Gap

- It is rare to find studies that investigated the impacts of poor performance or breakdown of one transit mode on other functioning modes in multimodal integrated transit systems
- This is because, normally, researchers remove periods of major service interruption from their analysis

Research Objective

- This study aims at understanding the impact of incident and interruption delays of Toronto's subway system on the performance of the surface transit system, namely buses and streetcars

Toronto, Canada

- Most populous city in Canada: 2.8 million inhabitants in 2015
- Fourth most populous city in North America
nerimen
- One of North America's fastest-growing cities: to reach of 3.7 million in 2041

[^0]
Study context

- Subway system extends to a total length of 68 km serving 69 stations
- 152 bus and streetcar routes, of which 148 make 245 connections with the subway system during the AM peak

Subway stops
Street network
——TTC bus routes

Subway lines

Bloor-Danforth line (Green line)

- Scarborough line (Blue line)

Sheppard line (Magenta line)
Yonge-University-Spadina line (Yellow line)

Data sources: City of Toronto, Statistics Canada, DMTI Projection: NAD 1983 Ontario Lambert

Methodology - Data

- Two sets of data:
- Detailed dataset of subway incidents in 2013 compiled by the Toronto Transit Commission (TTC)
- TTC's Automatic Vehicle Location (AVL) system data for bus and streetcar routes that are within a short walking distance (200 m) from the subway stations investigated in this study

Methodology - Data

- Subway system interruption data:
- A total of 12,600 subway incidents at the station level of analysis in 2013
- For each record, the TTC's dataset includes:
- date, time
- subway station, direction of travel
- amount of delay (in minutes)
- train number and type
- a brief description of the incident and a code representing the incident type

Methodology - Study Time Frame

- The time frame of interest include all weekdays of May 2013
- That month saw the greatest number of incidents with the largest amount of delay, and lowest standard deviations at the system level in 2013

Methodology - Subway Stop Selection

- Focus on 24 subway stations along Line 1 (YUS line)
- These stations were selected according to a composite indicator that was generated to identify the most vulnerable stations in the subway system.

Subway lines

—Bloor-Danforth line

- Scarborough line
- Sheppard line

Yonge-University-Spadina line
........ TTC streetcar lines
—TC bus routes

Z-score value

O -2.66--2.41

O $\quad-2.40--2.02$
$-2.01--1.71$
$-1.70-1.36$
$-1.35-1.09$

May 2013 z-score total$-0.25-0.75$
0.76-3.36
3.37-7.41
7.42-11.87
Analyzed stations

Methodology - Analyzed Incidents

- Allowing us to analyze the impacts of $\mathbf{3 8 8}$ incidents with total delay of $\mathbf{1 7 0 2}$ minutes, ranging from 2 minutes incidents to 73 minutes incidents

Methodology

- More than 80 million observations were collected from the TTC's AVL system for $\mathbf{4 1}$ bus routes and $\mathbf{1 0}$ streetcar routes for the weekdays between May $1^{\text {st }}$ and $31^{\text {st }}, 2013$
- AVL data include information on bus and streetcar locations (x and y coordinates) recorded every 20 seconds as well as other information related to time of record and route number

Methodology - data preparation

- Trip-time-point segment is the study's unit of analysis
- defined as the part of a trip over a route section between every two consecutive time points along a route
- Thus, all the variables were summarized according to that
- E.g., average speed per trip-segment is computed as the average speed of all GPS points of a given trip within a
 given segment

Methodology - data preparation

- In the analysis, we kept segment that start within 3 kilometres of the Line 1
- Python script was used to clean the data and identify trips in ArcGIS
- After this process, about $\mathbf{1 , 1 7 0 , 0 0 0}$ and $\mathbf{7 8 0 , 0 0 0}$ tripsegment records were included in the analysis for the bus and streetcar datasets, respectively

Methodology

- Descriptive statistics
- Two statistical models using the bus and streetcar service average speed (kilometre/hour) per tripsegment as the dependent variable
- Bus speed model
- Streetcar speed model

Methodology

Other variables have been tested but they were eliminated from the study due to their insignificance and/or correlation to other used variables such as:

- Subway stations spacing
- Number of nearby bus/streetcar lines (to account for route competition)
- Express routes
- Headway and Headway^2

	Variable
$\begin{aligned} & 8 \\ & \frac{8}{0} \\ & \frac{0}{0} \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	Direction
	Segment sequence
	Number of scheduled stops Adjacent segment (within 200 meters) \qquad
	Segment with a layover
	Segment distance (KM) Streetcar-Bus
	Streetcar STC-ALRV
	Streetcar -Flexity
	Bus route number i (41 dummy variables)
	Streetcar route number i (10 dummy variables)
	Distance to Union Station (KM) Morning peak
	Afternoon peak
	Early evening
	Late evening
	Subway station ridership (in thousands)
$\begin{gathered} 8 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{gathered}$	Subwav station ridershiv^2 Trips starting within 5 minutes of an incident
	Trips starting within $5-10$ minutes of an incident
	Trips starting within 10-20 minutes of an incident
	Trips starting within $20-30$ minutes of an incident
	Trips starting within $30-60$ minutes of an incident
	Trips starting within $60+$ minutes of an incident
	Segments after an impacted segment
	Trips in same direction of an incident
	Trips starting after a cleared incident

Analysis -Streetcar descriptive statistics

	Trips during subway normal operations		Trips after a subway incident	
	Mean	Std. Dev.	Mean	Std. Dev.
Segment average speed (KM/H)	12.71	5.53	9.65	3.92
Direction	0.497	0.500	0.540	0.498
Time-point sequence	5.765	3.310	6.613	1.540
Number of scheduled stops	4.744	9.604	4.505	2.867
Adjacent segment (within 200 meters)	0.208	0.406	1.000	0.000
Segment with a layover	0.191	0.483	0.131	0.388
Segment distance (KM)	0.992	0.634	0.879	0.413
Streetcar bus	0.099	0.299	0.055	0.229
Streetcar ALRV	0.106	0.308	0.085	0.279
Streetcar Flexity	0.000	0.003	0.000	0.000
Average headway	3.847	1.626	3.891	2.019
Distance to Union Station (KM)	2.196	1.490	1.950	1.847
Morning peak	0.182	0.386	0.226	0.419
Afternoon peak	0.237	0.425	0.248	0.432
Early evening	0.133	0.340	0.148	0.355
Late evening	0.126	0.331	0.056	0.231
Trips starting within 5 minutes of an incident	0.000	0.000	0.144	0.352
Trips starting within 5-10 minutes of an incident	0.000	0.000	0.150	0.357
Trips starting within 10-20 minutes of an incident	0.000	0.000	0.303	0.460
Trips starting within 20-30 minutes of an incident	0.000	0.000	0.269	0.443
Trips starting within 30-60 minutes of an incident	0.000	0.000	0.123	0.329
Trips starting within 60+ minutes of an incident	0.000	0.000	0.011	0.105
Time-point after an incident	0.030	0.171	0.000	0.000
Incident in same direction of travel	0.001	0.034	0.132	0.339
Trips starting after a cleared incident	0.000	0.000	0.866	0.341
Number of records				

Analysis - bus descriptive statistics

	Trips during subway normal operations		Trips after a subway incident	
	Mean	Std. Deyiation	Mean	Std. Deviatio
Segment average speed (KM/H)	18.22	9.35	14.23	9.56
Time-point sequence	6.297	4.320	6.600	5.257
Number of scheduled stops	3.599	2.481	3.069	2.513
Adjacent segment (within 200 meters)	0.298	0.457	1.000	0.000
Segment with a layover	0.173	0.378	0.287	0.453
Segment distance (KM)	1.202	0.801	1.265	0.921
Average headway	7.078	5.870	7.186	6.119
Average headway^2	84.55	157.59	89.08	163.55
Distance to Union Station (KM)	7.886	3.324	8.215	2.821
Morning peak	0.201	0.401	0.286	0.452
Afternoon peak	0.240	0.427	0.370	0.483
Early evening	0.130	0.337	0.076	0.265
Late evening	0.119	0.324	0.063	0.244
Trips starting within 5 minutes of an incident	0.000	0.000	0.148	0.355
Trips starting within 5-10 minutes of an incident	0.000	0.000	0.159	0.366
Trips starting within 10-20 minutes of an incident	0.000	0.000	0.298	0.457
Trips starting within 20-30 minutes of an incident	0.000	0.000	0.292	0.454
Trips starting within 30-60 minutes of an incident	0.000	0.000	0.103	0.303
Trips starting within 60+ minutes of an incident	0.000	0.000	0.001	0.028
Time-point after an incident	0.033	0.179	0.000	0.000
Incident in same direction of travel	0.004	0.063	0.163	0.369
Trips starting after a cleared incident	0.000	0.000	0.887	0.316
Number of records	1,162,241		10,300	

Analysis - Models

Streetcar speed model

Model		Unstandardized Coefficients		$\begin{gathered} \hline \begin{array}{c} \text { Standardized } \\ \text { Coefficients } \end{array} \\ \hline \text { Beta } \end{gathered}$	t	Sig.	95.0\% Confidence Interval for B	
		B	Std. Emror				Lower Bound	Upper Bound
1	(Constant)	10.113	. 032		312.398	. 000	10.050	10.177
	DIR_of_T	-.412	. 010	-. 037	-39.379	. 000	-. 433	-. 392
	TP	. 047	. 002	. 028	19.749	. 000	. 042	. 052
	Sm_TPStp_count	-. 028	. 001	-. 048	-43.338	. 000	-. 029	-. 026
	Stops_witihin100	-2.909	. 018	- 215	-163.695	. 000	-2.944	-2.875
	Layover	-1.830	. 013	-. 160	-143.606	. 000	-1.855	-1.805
	Seg_dis	. 002	. 000	. 269	229.598	. 000	. 002	. 002
	BusType	-. 323	. 035	-. 017	-9.248	. 000	-. 392	-. 255
	STC-AIRV	-. 211	. 041	-. 012	-5.125	. 000	- 291	- 130
	Flexity	. 406	2.034	. 000	. 200	. 842	-3.581	4.393
	DIST_Union	. 000	. 000	. 130	51.645	. 000	. 000	. 000
	Amp	1.503	. 015	. 105	99.001	. 000	1.473	1.533
	Afternoon_P	-.721	. 014	-. 056	-51.703	. 000	-.748	-. 694
	night_P	1.168	. 017	. 072	69.479	. 000	1.135	1.201
	Early_morning	3.984	. 017	. 239	231.406	. 000	3.950	4.018
	T_riderhsipF1000	-. 033	. 003	-. 036	-13.244	. 000	-. 038	-. 028
	T_riderhsipf1000_2	. 000	. 000	. 034	13.448	. 000	. 000	. 000
	N30_STR_0_5	- 442	. 272	-. 002	-1.627	. 104	-.975	. 091
	N30_STR_5_10	-1.403	. 342	-. 006	-4.103	. 000	-2.074	-.733
	N30_STR_10_20	-1.168	. 315	-. 007	-3.709	. 000	-1.785	-. 551
	N30_STR_20_30	-1.064	. 322	-. 006	-3.302	. 001	-1.696	-. 433
	N30_STR_within_60	-1.145	. 354	-. 004	-3.236	. 001	-1.838	-. 451
	N30_STR_above_60	-1.798	. 851	-. 002	-2.114	. 035	-3.466	-. 131
	Fii_TPs_after_Incident	-. 016	. 030	-. 001	-1.711	. 092	-. 076	. 013
	N30_After_INC_Cleared_ Dummy	1.001	. 283	. 010	3.538	. 000	447	1.556
	R501	-.789	. 045	-. 042	-17.596	. 000	-. 876	- 701
	R502	-. 697	. 047	-. 015	-14.825	. 000	-. 789	-. 605
	R503	-. 162	. 071	-. 002	-2.278	. 023	-. 302	-. 023
	R504	-. 078	. 018	-. 005	-4.321	. 000	-. 114	-. 043
	R506	. 220	. 021	. 012	10.275	. 000	. 178	. 263
	R509	1.540	. 048	. 072	32.377	. 000	1.447	1.633
	R510	-2.484	. 025	- 154	-99.625	. 000	-2.533	-2.435
	R511	-1.194	. 027	-. 056	-44.636	. 000	-1.247	-1.142
	R512	-. 579	. 040	-. 033	-14.375	. 000	-.658	- 500

Bus speed model

Analysis - Streetcar speed model

			Coeff.	Z	95\% Conf. Interval	
					Lower Bound	Upper
		(Constant)	10.1	312.4	10.1	10.2
N	780,705	Direction	-0.41	-39.38	-0.43	-0.39
		Time-point sequence	0.05	19.75	0.04	0.05
Adjusted \mathbf{R} Square	0.32	Number of scheduled stops	-0.03	-43.34	-0.03	-0.03
		Adjacent segment (within 200 meters)	-2.91	-163.7	-2.94	-2.87
		Segment with a layover	-1.83	-143.6	-1.86	-1.81
F statistics	$\begin{gathered} (33,780680) \\ 12193 \end{gathered}$	Segment distance (KM)	2.34	229.6	2.32	2.36
		Streetcar CLRV (Base case)				
F sig.		Streetcar bus	-0.32	-9.25 ***	-0.39	-0.25
	0	Streetcar ALRV	-0.21	-5.12 ***	-0.29	-0.13
		Streetcar Flexity	0.41	0.20	-3.58	4.39
		Distance to Union Station (KM)	0.48	51.65 ***	0.46	0.50
		Morning peak	1.50	99.00***	1.47	1.53
Bold indicates statistical significance		Midday (Base case)				
		Afternoon peak	-0.72	-51.70***	-0.75	-0.69
		Early evening	1.17	69.48***	1.13	1.20
*** Significant at 99\% ** Significant at 95\% * Significant at 90\%		Late evening	3.98	231.41***	3.95	4.02
		Subway station ridership (in thousands)	-0.03	$-13.24 * * *$	-0.04	-0.03
		Trips starting during normal operations (base case)				
		Trips starting within 5 minutes of an incident	-0.44	-1.63	-0.98	0.09
		Trips starting within 5-10 minutes of an incident	-1.40	-4.10***	-2.07	-0.73
		Trips starting within 10-20 minutes of an incident	-1.17	-3.71***	-1.79	-0.55
		Trips starting within 20-30 minutes of an incident	-1.06	-3.30***	-1.70	-0.43
		Trips starting within 30-60 minutes of an incident	-1.14	-3.24***	-1.84	-0.45
		4 Trips starting within $60+$ minutes of an incident Time-point after an incident	-1.80	$\frac{-2.11^{* *}}{-1.71^{*}}$	$-\frac{3.47}{-0.08}$	-0.13
UNIVERSITY O FACULTY of APPLIE		Time-point after a cleared incident	1.00	$3.54{ }^{* *}$	0.45	1.56
		deteine a elvaiveering				

Analysis - Bus speed model

			Coeff.	Z	95\% Conf. Interval	
					Lower Bound	Upper Bound
N	1,172,542	(Constant)	14.21	266.5***	14.11	14.32
		Direction	0.29	21.20***	0.26	0.32
Adjusted R Square	0.39	Time-point sequence	0.03	11.51***	0.03	0.04
		Number of scheduled stops	-0.21	-49.56***	-0.22	-0.20
F statistics	$\begin{gathered} (61,1172521) \\ 25431 \end{gathered}$	Adjacent segment (within 200 meters)	-3.94	-232.4***	-3.97	-3.91
		Segment with a layover	-7.69	-336.5***	-7.74	-7.65
		Segment distance (KM)	2.83	204.1***	2.81	2.86
F sig.	0	Distance to Union Station (KM)	0.17	44.21***	0.16	0.17
		Morning peak	0.48	24.83***	0.45	0.52
Bold indicates statistical significance		Midday (Base case)				
		Afternoon peak	-2.09	-112.7***	-2.12	-2.05
		Early evening	1.97	87.82***	1.92	2.01
		Late evening	6.38	273.9***	6.34	6.43
		Subway station ridership (in thousands)	-0.03	-12.40***	-0.04	-0.03
*** Significant at 99\% ** Significant at 95\% * Significant at 90\%		Subway station ridership^2	0.00	13.86***	0.00	0.00
		!Trips starting during normal operations (base case)				
		Trips starting within 5 minutes of an incident	0.06	0.32	-0.32	0.44
		Trips starting within 5-10 minutes of an incident	0.14	0.74	-0.23	0.51
		- Trips starting within 10-20 minutes of an incident	0.02	0.13	-0.26	0.30
		\| Trips starting within 20-30 minutes of an incident	-0.29	-2.03**	-0.58	-0.01
		Trips starting within 30-60 minutes of an incident	-0.60	-2.58***	-1.05	-0.14
		Trips starting within 60+ minutes of an incident	-3.55	-1.37	-8.62	1.53
		- Time-point after an incident	-0.43	-11.21***	-0.51	-0.36
		Incident in same direction of travel	0.36	1.77*	-0.04	0.75

Sensitivity analysis- Streetcar

- Streetcar line with median speed: Route 501-Westbound- CLRV
- Average speed during different type periods

	Morning peak		Midday period		Afternoon peak		Early evening		Late evening			\%
	Speed (Km/h)	\%	Speed (Km/h)	\%	Speed (Km/h)	\%	Speed (Km/h)	\%			\%	
Trips starting during normal operations	11.02		9.52		8.80		10.69		13.50			
Trips starting within 5 minutes of an incident	11.02	0.0\%	${ }^{\text {\| }} 9.52$	0.0\%	8.80	0.0\%	10.69	0.0\%	13.5		0.0\%	0.0\%
Trips starting within 5-10 minutes of an incident	9.62 -	-12.7\%	8.12	-14.7\%	7.39	-16.0\%	9.28	-13.1\%	12.1		10.4\%	-13.4\%
Trips starting within 10-20 minutes of an incident	9.85	-10.6\%	8.35	-12.3\%	7.63	-13.3\%	9.52	-10.9\%	12.3	-8	8.6\%	-11.1\%
Trips starting within 20-30 minutes of an incident	9.96	-9.7\%	\| 8.45	-11.2\%	7.73	-12.1\%	9.62	-10.0\%	12.4	$4 \text {-7 }$	7.9\%	-10.2\%
Trips starting within 30-60 minutes of an incident	9.88 -	-10.4\%	8.37	-12.0\%	7.65	-13.0\%		-10.7\%	12.3	-8	-8.5\%	-10.9\%
Trips starting within 60+ minutes of an incident	9.22	-16.3\%	7.72	-18.9\%	7.00	-20.4\%\|	8.89	-16.8\%	11.7	-1	13.3\%	-17.2\%
Averages	9.9	-9.9\%	8.4	-11.5\%		-12.5\%	9.6	-10.3\%	12.4	-8	8.1\%	

\% of change in speed = (trip speed during an incident category - trip speed during normal operations)/ trip speed during normal operations

Sensitivity analysis- Streetcar

Sensitivity analysis- Streetcar

- For bus line with median speed: Route 96 - Eastbound
- Average speed during different type periods

	Morning peak		Midday period		Afternoon peak		Early evening		Late evening		\%
	Speed (Km/h)	\%	Speed (Km/h)	\%	Speed (Km/h)	\%	Speed (Km/h)	\%	Speed (Km/h)	\%	
Trips starting during normal operations	17.0		16.5		14.		18.				
Trips starting within 5 minutes of an incident	17.02	0.0\%	16.53	0.0\%	14.45	0.0\%	18.50	0.0\%	22.92	0.0\%	0.0\%
Trips starting within 5-10 minutes of an incident	17.02	0.0\%	16.53	0.0\%	14.45	0.0\%	18.50	0.0\%	22.92	0.0\%	0.0\%
Trips starting within 10-20 minutes of an incident	17.02	0.0\%	16.53	0.0\%	14.45	0.0\%	18.50	0.0\%	22.92	0.0\%	0.0\%
Trips starting within 20-30 minutes of an incident	16.72	-1.7\%	16.24	-1.8\%	14.15	-2.0\%	18.21	-1.6\%	22.62	-1.3\%	-1.7\%
Trips starting within 30-60 minutes of an incident	16.42	-3.5\%	15.94	-3.6\%	13.85	-4.1\%	17.90	-3.2\%	22.32	-2.6\%	-3.4\%
Trips starting within $60+$ minutes of an incident	17.02	0.0\%	16.53	0.0\%	14.45	0.0\%	18.50	0.0\%	22.92	0.0\%	0.0\%
Avera	16.9	-0.9\%	16.4	-0.9\%	14.3	-1.0\%	18.4	-0.8\%	22.8	-0.6	

\% of change in speed = (trip speed during an incident category - trip speed during normal operations)/ trip speed during normal operations

Conclusions

- Subway service interruptions have a statistically significant negative impact on bus and streetcar service operations.
- Nevertheless, the intensity of delay varies according to the mode, and the trip starting time category relative to the incident's starting time

UNIVERSITY OF TORONTO
FACULTY of APPLIED SCIENCE \& ENGINEERING
Transportation Research Institute

Conclusions

- Subway incidents have more immediate and long lasting negative impacts on streetcar service than for buses
- This may be reflecting the TTC's used protocols of deploying buses (or shuttle service) to deal with subway transit service disruptions, when unexpected interruptions occur.
- The used protocols deploys a very few shuttle service along the south section of the subway system (U-shaped section) where parallel streetcar service is available

Future steps

- Testing and developing of models to understand the impacts of subway incidents on bus service reliability
- Understanding the impacts of different incidents types while controlling for the actual change

Thank you!

TRANSIT DATA 2017: RESEARCH AND APPLICATIONS ON THE USE OF PASSIVE DATA FROM PUBLIC TRANSPORT - 22-23-24 MAY, 2017. SANTIAGO, CHILE

Whab Diab (ehab.diab@utoronto.ca)
Amer Shalaby (amer@ecf.utoronto.ca)

[^0]: 0
 Transportation Research Institute

